..... oddeti

Fourier Series

Formulae

Applications

Geometrical

Practice Question

Complex Fourier
Series

Convergence

Fourier Series

Sajid Ali

SEECS-NUST

November 7, 2014

A powerful way of studying a given function in terms of small constituents that share the same properties, is done by the use of a series.

Sajid Ali

Introduction

Fourier Series

Formula

Applications

Geometrical Jnderstanding

Practice Questions

Complex Fourier Series

A powerful way of studying a given function in terms of small constituents that share the same properties, is done by the use of a series.

For example, the series of

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

contains terms on the right which are all odd polynomials. Similarly cos—series comprise of all even polynomials.

Sajid Ali

Introduction

_ .

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

A powerful way of studying a given function in terms of small constituents that share the same properties, is done by the use of a series.

For example, the series of

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

contains terms on the right which are all odd polynomials. Similarly cos—series comprise of all even polynomials.

Can we generalize this idea to incorporate functions that share other properties?

Sajid Ali

Introduction

Fourier Serie

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

In particular, we can ask the following question

What about functions that exhibit repetitive behavior?

Sajid Ali

Introduction

Fourier Series

Applications

What about functions that exhibit repetitive behavior? Such functions must be expressed in terms of fundamental functions that share repetitive behavior. We know that both sin & cos are functions that repeat themselves (periodic), therefore, it would be interesting to study a series that contains both of them.

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Understanding

Practice Questions

Complex Fourier

What about functions that exhibit repetitive behavior? Such functions must be expressed in terms of fundamental functions that share repetitive behavior. We know that both sin & cos are functions that repeat themselves (periodic), therefore, it would be interesting to study a series that contains both of them.

Such a series is known as Fourier series, named after a French mathematician Joseph Fourier (1768-1830), who introduced it during his study of heat flow.

Sajid Ali

Introduction

Fourier Series

Application

Geometrical

Practice Questions

Complex Fourier Series

There are two equivalent statements that we can make about Fourier series:

- 1. A function can be studied in terms of small constituents sharing repetitive behavior.
- 2. A function can be divided into small oscillations.

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Geometrical Jnderstanding

Practice Questions

Complex Fourier

There are two equivalent statements that we can make about Fourier series:

- 1. A function can be studied in terms of small constituents sharing repetitive behavior.
- A function can be divided into small oscillations.

Why is it important to divide any continuous or discontinuous function in terms of oscillations?

To answer this ask yourself another question. How does your cell phone receive or send signals in any kind of transmission? The answer is that a communication takes place when both receiver and transmitter interact each other via basic oscillatory modes of particles.

Introduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

There are two equivalent statements that we can make about Fourier series:

- 1. A function can be studied in terms of small constituents sharing repetitive behavior.
- 2. A function can be divided into small oscillations.

Why is it important to divide any continuous or discontinuous function in terms of oscillations?

To answer this ask yourself another question. How does your cell phone receive or send signals in any kind of transmission? The answer is that a communication takes place when both receiver and transmitter interact each other via basic oscillatory modes of particles.

Your course "Signals and Systems" is also based on this simple idea !!!.

Introduction

Fourier Series

Formulae

Applications

Geometrical Jnderstanding

Practice Questions

Complex Fourier Series

A periodic function f(x) is a function of period p which satisfy

$$f(x+p)=f(x)$$

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier

A periodic function f(x) is a function of period p which satisfy

$$f(x+p)=f(x)$$

therefore they produce same output every after p cycle. For example both $\sin(x)$ and $\cos(x)$ have period 2π because

$$\sin(x+2\pi) = \sin(x), \quad \cos(x+2\pi) = \cos(x)$$

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier

A periodic function f(x) is a function of period p which satisfy

$$f(x+p)=f(x)$$

therefore they produce same output every after p cycle. For example both sin(x) and cos(x) have period 2π because

$$\sin(x+2\pi) = \sin(x), \quad \cos(x+2\pi) = \cos(x)$$

What are the periods of sin(2x), tan(x) and cos(5x)?

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier

Graph of "sin(x), sin(2x), sin(3x)" function for different frequency modes in the interval $[-\pi, \pi]$.

Sajid Ali

Introduction

Fourier Series

Graph of " $\sin(x)$, $\sin(2x)$, $\sin(3x)$ " function for different frequency modes in the interval $[-\pi, \pi]$.

Sajid Ali

Introduction

Fourier Series

Formulae

Application

Geometrical Understanding

Practice Questions

Complex Fourier Series

Fundamental Modes

Graph of "sin(x), sin(2x), sin(3x)" function for different frequency modes in the interval $[-\pi, \pi]$.

Sajid Ali

Introduction

Fourier Series

Introduction

Fourier Series

Applications

For a periodic function f(x) of period 2L, the Fourier series is given in terms of harmonics

Sajid Ali

Introduc

Fourier Series

Formulae

Applications

Geometrical

Practice Questions

Complex Fourier Series

$$f(x) = a_0 + \underbrace{a_1 \sin kx + b_1 \cos kx}_{\text{first mode}} + \underbrace{a_2 \sin 2kx + b_2 \cos 2kx}_{\text{second mode}} + \dots$$

$$= a_0 + \sum_{n=1}^{\infty} (a_n \sin(nkx) + b_n \cos(nkx))$$

where $k=\pi/L$ and the coefficients are determined in three steps.

Sajid Ali

Introduction

Fourier Series

ormulae

Applications

Understanding

Practice Questions

Complex Fourier Series

For a periodic function f(x) of period 2L, the Fourier series is given in terms of harmonics

$$f(x) = a_0 + \underbrace{a_1 \sin kx + b_1 \cos kx}_{\text{first mode}} + \underbrace{a_2 \sin 2kx + b_2 \cos 2kx}_{\text{second mode}} + \dots$$

$$= a_0 + \sum_{n=0}^{\infty} (a_n \sin(nkx) + b_n \cos(nkx))$$

where $k = \pi/L$ and the coefficients are determined in three steps.

Step-1
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$
Step-2
$$a_n = \frac{1}{L} \int_{-L}^{L} \sin(nkx) f(x) dx$$
Step-3
$$b_n = \frac{1}{L} \int_{-L}^{L} \cos(nkx) f(x) dx$$

Fourier Series

Applications

Understanding

Clarification about k.

Since the second term in Fourier series is $\sin kx$ therefore its period is $2\pi/k$ but the period of given function was 2L therefore we must have

$$\frac{2\pi}{k} = 2L \qquad \Rightarrow k = \frac{\pi}{L}$$

Sajid Ali

Fourier Series

Formula

Applications

Understanding

Practice Questions

Complex Fourier Series

Fourier Series

For a periodic function f(x) of period 2π , we get k=1 and the Fourier series becomes

Sajid Ali

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

$$f(x) = a_0 + \underbrace{a_1 \sin x + b_1 \cos x}_{\text{first mode}} + \underbrace{a_2 \sin 2x + b_2 \cos 2x}_{\text{second mode}} + \dots$$

$$= a_0 + \sum_{n=0}^{\infty} (a_n \sin(nx) + b_n \cos(nx))$$

and the coefficients are determined in three steps.

Step-1
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
Step-2
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) f(x) dx$$
Step-3
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nx) f(x) dx$$

Sajid Ali

meroduction

Fourier Series

ormulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

Fourier Series

Q: To which functions we can apply Fourier series?

Δ hiic2

introduction

Fourier Series

Formulae

Applications

Geometrical Inderstanding

Practice Questions

Complex Fourier Series

Q: To which functions we can apply Fourier series?

Ans: It can be applied to both continuous and discontinuous functions. However the convergence of a series at a particular point may or may not be equal to the value of the function at that point. For most functions arise in engineering problems this is not the case.

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier

1.
$$\sin(n\pi) = 0 = \cos\left((2n+1)\frac{\pi}{2}\right)$$

2.
$$\sin\left((2n+1)\frac{\pi}{2}\right) = (-1)^n = \cos(n\pi)$$
 $n = 0, 1, 2, ...$

3. For odd fn.
$$f(-x) = -f(x)$$
,
$$\int_{-L}^{L} \underbrace{f(x)}_{\text{odd}} dx = 0$$

4. For even fn.
$$f(-x) = f(x)$$
,
$$\int_{-L}^{L} \underbrace{f(x)}_{\text{even}} dx = 2 \int_{0}^{L} f(x) dx$$

In the light of above formulae we can deduce that for an odd function we have a_0 , $b_n = 0$ and for even functions $a_n = 0$.

meroduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

Q.1: Find the Fourier series of sin(3x), cos 5x, 2 sin(2x)?

Sajid A

IIItioductio

Fourier Series

Formulae

Applications

Geometrical Understandin

Practice Questions

Complex Fourier Series

Q.1: Find the Fourier series of $\sin(3x)$, $\cos 5x$, $2\sin(2x)$?

Find the Fourier series of x for a period $2L = 2\pi$?

Fourier Series

Applications

Examples

- Q.1: Find the Fourier series of sin(3x), cos 5x, 2 sin(2x)?
- Q.2: Find the Fourier series of x for a period $2L = 2\pi$?
- Q.3: Find the Fourier series of f(x) for a period 2π such that

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

Fourier Series

Applications

Understanding

Example-1: Find the Fourier series of x for a period $2I = 2\pi$?

Ans. Since f(x) is an odd function therefore it is natural to see $b_n = 0$ for all n, because $\cos(nx)$ is an even function thus we only need to calculate Step-2

Step-2

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx \quad \text{Integration by parts!!!}$$

$$= \frac{1}{\pi} \left(\frac{-x \cos nx}{n} \right)_{x=-\pi}^{x=\pi} - \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) dx$$

$$= \frac{2}{n} (-1)^{n+1} - 0 \quad \text{Reason !!!}$$

Verify that $a_0 = 0$.

$$2L = 2\pi$$
?

Ans. Therefore

$$f(x) = 2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin nx}{n}$$
$$= 2\left(\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \dots\right)$$

Use the value $x = \pi/2$ to see an interesting fact !!!

$$\frac{\pi}{2} = 2\left(1 - \frac{1}{3} + \frac{1}{5} - \dots\right)$$
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots$$

which is a series representation of $\pi/4$.

.....

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

$$f(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots\right)$$

Sajid Ali

Introduc

Fourier Series

Formulae

Applications Geometrical

Understanding

Practice Questions

Complex Fourier Series

$$f(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + ...\right)$$

Sajid Ali

IIItioduction

Fourier Series

Formulae

Application:

Geometrical Understanding

Practice Questions

Complex Fourier Series

$$f(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + ...\right)$$

Sajid Ali

Introduction

Fourier Series

ormulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

$$f(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + ...\right)$$

Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

2. The function f(x) = 1, $-\pi < x < 0$ and f(x) = 0, $0 < x < \pi$ has the Fourier series representation

$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left(\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right)$$

Sajid Ali

Introducti

Fourier Series

Formulae

Application

Geometrical Understanding

Practice Questions

Complex Fourier Series

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

CVI

Sajid Ali

...c. oddetioi

Fourier Series

Formulae

Applications Geometrical

Understanding

Practice Questions

Complex Fourier Series

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

Ans.

Step-1
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

= $\frac{1}{2\pi} \int_{-\pi}^{0} 1 dx + 0$ (Reason !!!) $= \frac{1}{2}$

Sajid Ali

Introductio

Fourier Series

Formulae

Applications Geometrical

Understanding

Practice Questions

Complex Fourier Series

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

Ans.

Step-1
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

 $= \frac{1}{2\pi} \int_{-\pi}^{0} 1 dx + 0 \quad \text{(Reason !!!)} \quad = \frac{1}{2}$
Step-2 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{-\pi}^{0} \sin(nx) dx$
 $= \frac{1}{\pi} \left(\frac{-\cos nx}{n} \right)^{x=0} = \frac{1}{n\pi} \left(-1 + (-1)^n \right)$

Sajid Ali

milioduction

Fourier Series

Formulae

Applications Geometrical

Understanding

Practice Questions

Complex Fourier Series

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

Ans. Step-2

$$a_n = \frac{1}{n\pi} \left(-1 + (-1)^n \right)$$

= $\frac{-2}{n\pi}$ if n is odd and zero otherwise

Sajid Ali

meroduction

Fourier Series

Formulae

Applications Geometrical

Understanding

Practice Questions

Complex Fourier Series

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

Ans. Step-3

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{0} \cos(nx) dx$$
$$= \frac{1}{\pi} \left(\frac{-\sin nx}{n}\right)_{x=-\pi}^{x=0}$$
$$= 0$$

Sajid Ali

Introducti

Fourier Series

Formula

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

Ans. Step-3

Therefore,

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{-2}{\pi}\right) \frac{\sin nx}{n}$$
$$= \frac{1}{2} - \frac{2}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots\right)$$

Sajid Ali

Introductio

Fourier Series

Formulae

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

Q.4: Find the Fourier series of x^2 for a period $L = 2\pi$? Ans. Since f(x) is an even function therefore it is natural to see $a_n = 0$ for all n, because $\sin(nx)$ is an odd function. Follow the steps as in the earlier questions.

Also find the series of $\pi^2/6$.

Sajid Ali

Introduction

Fourier Series

Formula

Applications

Geometrical Jnderstanding

Practice Questions

Complex Fourier Series

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

Sajid Ali

Introduct

Fourier Series

Formulae

Applications

Jnderstanding

Practice Questions

Complex Fourie Series

Q.6: Find the Fourier series of f(x) such that

$$f(x) = 1 - x^2$$
, $(-1 < x < 1)$

Sajid Ali

Fourier Series

Applications

Practice Questions

Find the Fourier series of f(x) such that

$$f(x) = \begin{cases} -x, & -1 < x < 0 \\ x, & 0 < x < 1 \end{cases}$$

Sajid Ali

Fourier Series

Applications

Practice Questions

Q.8: A sinusoidal voltage $E \sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function

$$u(t) = \begin{cases} 0, & -L < t < 0 \\ E \sin \omega t, & 0 < t < L \end{cases}$$

Sajid Ali

Introduc

Fourier Series

Formulae

Applications

Understanding

Practice Questions

Complex Fourier Series

Q.8: A sinusoidal voltage $E \sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function

$$u(t) = \begin{cases} 0, & -L < t < 0 \\ E \sin \omega t, & 0 < t < L \end{cases}$$

Ans. Note that here $2L = 2\pi/\omega \Rightarrow L = \pi/\omega$.

milioduction

Fourier Series

Formulae

Applications

Understanding

Practice Questions

Complex Fourier Series

A sinusoidal voltage $E \sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function

$$u(t) = \begin{cases} 0, & -L < t < 0 \\ E \sin \omega t, & 0 < t < L \end{cases}$$

Note that here $2L = 2\pi/\omega \Rightarrow L = \pi/\omega$. The answer is

$$u(t) = \frac{E}{\pi} + \frac{E}{2}\sin\omega t - \frac{2E}{\pi}\left(\frac{1}{1.3}\cos 2\omega t + \frac{1}{3.5}\cos 4\omega t + \dots\right)$$

Fourier Series

Applications

Practice Questions

Using the well-known Euler formula $e^{ix} = \cos x + i \sin x$, a complex Fourier series can be obtained

CVI

Sajid Ali

Introduc

Fourier Series

ormulae

Applications

Geometrical

Practice Questions

Complex Fourier Series

Using the well-known Euler formula $e^{ix} = \cos x + i \sin x$, a complex Fourier series can be obtained

$$f(x) = \sum_{n=-\infty}^{N=-\infty} c_n e^{in\pi x/L},$$

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx, \quad n = 0, \pm 1, \pm 2, \dots$$

The reasons for using complex Fourier series are following:

Fourier Series

Applications

Using the well-known Euler formula $e^{ix} = \cos x + i \sin x$, a complex Fourier series can be obtained

$$f(x) = \sum_{n = -\infty}^{n = -\infty} c_n e^{in\pi x/L},$$

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx, \quad n = 0, \pm 1, \pm 2, ...$$

The reasons for using complex Fourier series are following: 1. It helps to combine both "sin" and "cos" in a unified unit " $e^{i \times r}$. Sajid Ali

Introduction

Fourier Series

Formulae

Applications

Understanding

Practice Questions

Complex Fourier Series

Using the well-known Euler formula $e^{ix} = \cos x + i \sin x$, a complex Fourier series can be obtained

$$f(x) = \sum_{n = -\infty}^{n = \infty} c_n e^{in\pi x/L},$$

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx, \quad n = 0, \pm 1, \pm 2, ...$$

The reasons for using complex Fourier series are following:

- It helps to combine both "sin" and "cos" in a unified unit "e^{i x}".
- Both coefficients a_n and b_n can be obtained easily from complex coefficients c_n .

Sajid Ali

Fourier Series

Applications

Understanding

Q.1: Find the complex Fourier series of f(x) = x, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ and obtain from it the usual Fourier series.

Sajid Al

Introdu

Fourier Series

Formula

Applications

Geometrical Jnderstanding

Practice Questions

Complex Fourier Series

Example

Q.1: Find the complex Fourier series of f(x) = x, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ and obtain from it the usual Fourier series.

Note that here $2L = 2\pi \Rightarrow L = \pi$, so for $n \neq 0$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} dx,$$

$$2\pi c_n = \left(\frac{x e^{-inx}}{-in}\right)_{x=-\pi}^{x=\pi} + \frac{1}{in} \int_{-\pi}^{\pi} e^{-inx} dx$$

$$2\pi c_n = \frac{\pi}{-in} \left(e^{-in\pi} + e^{in\pi}\right) + 0 \text{ Reason } !!!$$

$$2\pi c_n = \frac{\pi}{-in} \left(2\cos n\pi\right)$$

$$2\pi c_n = \frac{2i\pi(-1)^n}{n}$$

$$\Rightarrow c_n = \frac{i(-1)^n}{n}$$

Fourier Series

Formulae

Applications

Understanding

Q.1: Find the complex Fourier series of f(x) = x, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ and obtain from it the usual Fourier series.

Ans. For n=0,

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx$$
$$= 0$$

Also it is an odd function.

Fourier Series

Applications

Q.1: Find the complex Fourier series of f(x) = x, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ and obtain from it the usual Fourier series.

Ans.

$$f(x) = \sum_{n = -\infty}^{n = \infty} \frac{i(-1)^n}{n} e^{inx}$$

= ... - \frac{1}{2}ie^{-2ix} + \frac{1}{1}ie^{-ix} - \frac{1}{1}ie^{ix} + \frac{1}{2}ie^{2ix} + ...

Fourier Series

Applications

Example

Q.1: Find the complex Fourier series of f(x) = x, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ and obtain from it the usual Fourier series. Ans.

$$f(x) = \dots - \frac{1}{2}ie^{-2ix} + \frac{1}{1}ie^{-ix} - \frac{1}{1}ie^{ix} + \frac{1}{2}ie^{2ix} + \dots$$

$$= \dots - \frac{1}{2}i(\cos 2x - i\sin 2x) + \frac{1}{1}i(\cos x - i\sin x)$$

$$- \frac{1}{1}i(\cos x + i\sin x) + \frac{1}{2}i(\cos 2x + i\sin 2x) - \dots$$

$$= 2\sin x - \sin 2x + \dots$$

$$= 2\left(\sin x - \frac{\sin 2x}{2} + \dots\right)$$

Fourier Series

Applications

Understanding

Q.2: Find the complex Fourier series of $f(x) = e^x$, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ and obtain from it the usual Fourier series.

Sajid Ali

Introdu

Fourier Series

Formula

Applications

Geometrical Jnderstanding

Practice Questions

Complex Fourier Series

Q.3: Find the complex Fourier series of $f(x) = x^2$, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ and obtain from it the usual Fourier series.

Sajid A

Introduct

Fourier Series

Formula

Applications

Geometrical Understanding

Practice Questions

Complex Fourier Series

Although Fourier series can be obtained for a large class of functions. However, it can not be found for functions which carry abrupt changes in short time. Therefore, there are three types of conditions known as Dirichlet conditions to be satisfied.

Sajid Ali

Introducti

Fourier Series

Formulae

Application

Geometrical Understanding

Practice Questions

Complex Fourier Series

Condition-1 Over any period, f(x) must be absolutely integrable, i.e.,

$$\int_X |f(x)|\,dx < \infty$$

Counter example: f(x) = 1/x, 0 < x < 1.

Sajid Ali

Fourier Series

Formulae

Applications

Understanding

Practice Questions

Complex Fourier Series

Condition-2 In any finite interval, f(x) is of bounded variation, i.e., there are no more than a finite number of maxima and minima in that interval.

Counter example: $f(x) = \sin(2\pi/x), \quad 0 < x \le 1.$

Sajid Ali

Introduction

Formulae

Applications

Understanding

Practice Questions

Complex Fourier Series

Although Fourier series can be obtained for a large class of functions. However, it can not be found for functions which carry abrupt changes in short time. Therefore, there are three types of conditions known as Dirichlet conditions to be satisfied.

Condition-2 In any finite interval, f(x) is of bounded variation, i.e., there are no more than a finite number of maxima and minima in that interval.

Counter example: $f(x) = \sin(2\pi/x), \quad 0 < x < 1.$

Sajid Ali

Applications

Although Fourier series can be obtained for a large class of functions. However, it can not be found for functions which carry abrupt changes in short time. Therefore, there are three types of conditions known as Dirichlet conditions to be satisfied.

Condition-2 In any finite interval, f(x) is of bounded variation, i.e., there are no more than a finite number of maxima and minima in that interval.

Counter example: $f(x) = \sin(2\pi/x)$, $0 < x \le 1$. Condition-3 In any finite interval, f(x) is of bounded variation, i.e., there are finite number of discontinuities. Counter example: Draw a function. Sajid Ali

Introduction

Canacilaa

Applications

Understanding

Practice Questions

Complex Fourier Series